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The general design method for three-dimensional, potential, incompressible or 
subsonic-compressible flow developed in part I of this report is applied to the design of 
simple, mbranched ducts. A computer program, DINSDl, is developed and five numerical 
examples are presented: a nozzle, two elbows, an S-duct, and the preliminary design of a 
side inlet for turbomachines. The two major inputs to the program are the upstream 
boundary shape and the lateral velocity distribution on the duct wall. As a result of these 
inputs, boundary conditions are overprescribed and the problem is ill posed. However, it 
appears that there are degrees of "compatibility" between these two major inputs and 
that, for reasonably compatible inputs, satisfactory solutions can be obtained. By not 
prescribing the shape of the upstream boundary, the problem presumably becomes well 
posed, but it is not clear how to formulate a practical design method under this circum- 
stance. Nor does i t  appear desirable, because the designer usually needs to retain control 
over the upstream (or downstream) boundary shape. 

The problem is further complicated by the fact that, unlike the two-dimensional 
case, and irrespective of the upstream boundary shape, some prescribed lateral velocity 
distributions do not have proper solutions. 

In part I of this report (ref. 11, a general design method is developed for three- 
dimensional, potential, incompressible or subsonic-compressible flow fields with arbitrary, 
prescribed velocity distributions as a function of arc length along streamlines on the 
boundary of the field. For (the present) part I1 of this report, a computer program, 
DN3D1, has been developed for the design of simple, unbranched ducts with uniform 
velocities a t  the upstream and downstream boundaries and with arbitrary, prescribed 
velocity distributions along streamlines on the lateral boundaries. 

The design of flow fields with satisfactory velocities along the boundary is impor- 
tant for the following reasons: 

(If Boundav-layer separation losses can be avoided by prescribing velocity distri- 
butions in the direction of flow, along the surfaces of the boundary, that do not decrease 
too rapidly. 

(2) Shock losses in compressible flow and cavitation in incompressible flow can be 
avoided by prescribing velocities that do not exceed certain maximum values dictated by 
these phenomena. 

(3) For compressible flow in ducts, the desired flow rate can be assured by pre- 
scribing velocities that do not result in premature choked flow. 



However, the first objective of fluid dynamic design is to determine the shape of the 
flow-field boundary for which losses are minimum. For both incompressible and shock- 
free compressible flow, the fluid losses originate a t  the material surfaces along the flow- 
field boundary, and the magnitude of these losses depends on the velocitjr distribution 
along these surf aces. The characteristics of a desirable velocity distribution are rela- 
tively well known from boundary-layer theory. 

The main program, DIN3D1, together with 21 major subroutines is dese~bed  herein* 
The program input and output are also described and several numerical examples are 
presented. 

2.0 SYMBOLS 

All quantities are nondimensional; velocity is expressed as a ratio of the upstream 
velocity; linear quantities, expressed in any consistent unit for input, are made dimen- 
sionless in the program by dividing by the square root of the upstream boundap area; 
names for variables and parameters used in the computer program are not listed. 

A local continuity parameter, eq. (3.3.2) 

a distance between adjacent nodal points of finite-difference star, figs. in 
section 3.2 

B local continuity parameter, eq. (3.3.3) 

cc,co, 
coefficients in governing finite-difference eqs. (3.3.4) and (3.3.5) 

C11...9Cg 

cT,c$, 
coefficients given by eqs. (3.4.3) to  (3.4.5) 

c8,cZ 
- e unit vector 

- 
e 1 unit vector in direction of q along streamlines, which are intersections of 

t& and q stream surfaces, fig. in section 3.1 

- 
e2 unit vector tangent to intersection of q stream surface and cp potential 

surface, fig. in section 3.1 

- 
e3 unit vector tangent to intersection of @ stream surface and cp potential 

surface, fig. in section 3.1 

1 1  J ,K  indices in 9, t&, and q directions, respectively 
--  - 
i,jlk unit vectors in x, y, and z directions, respectively, fig. in section 3. Ji 

JX,KX indices for location of primary streamline, fig. in section 3.5 

k adjustment factors for constraints, eqs. (4.2.2) and (4.2.9) 

m path length in direction of F3 along intersection of @ stream surface and 
cp potential surface, fig. in section 3.1 



n path length in direction of F2 along intersection of q stream surface and 
ap potential surface, fig. in section 3.1 

Pu path length along perimeter of upstream boundary, fig. in section 3.5 

n velocity, expressed as ratio of upstream velocity 

- 
ig velocity vector, Flq, fig. in section 3.1 

9 residual error, eq. (3.3.4) 

r radius from axis of duct turn, fig. in appendix A 

s path length along streamline in direction of 751, fig. in section 3.1 

X9Y ,Z Cartesian coordinates in physical space 

Q%Y angles of direction cosines in x,y,z space, fig. in section 3.1 

A finite increment 

8 angle with which @ and q stream surfaces intersect on potential surface, 
fig . in section 3.1 ; any angle 

P local static density of fluid as ratio of upstream static density 

9 velocity potential, eq. (3.0.1) 

BPI@;F,TI curvilinear coordinates in physical x,y,z space, or orthogonal coordinates of 
transformed cp,*,-rl space 

6.) dot-product operator of two vectors 

Subscripts: 

amplitude 

D downstream boundary 

max maximum 

min minimum 

o outer radius 

P principal streamline, IP on first fig. in section 7.1 

U upstream boundary 

0 l 6 grid points in finite-difference star, figs. in section 3.2 

1,2,3 variables or components of variables associated with directions of F l ,  K2, 
and E3, respectively 



3.0 GOVERNING DIFFERENTIAL EQUATION AND CONSTRUCTION OF FLOW FIELD 

A major difficulty faced by all classical design methods is that they are boundary- 
value problems in which the velocity is specified along physical boundaries, the shapes of 
which are not known until the problem is solved. In this report, the difficulty was avoided 
by solving the problem in transformed cp,yt,v space, where cp and yt are the velocity 
potential and a stream function, respectively, and q is a second stream furiction asso- 
ciated with continuity in three--dimensional flow. The velocity distribution can then be 
expressed as a function of cp along the boundary streamlines (lines of constant V and T$ 

from the relation 

'P = Iq(s(s) ds 1 const (3.0.1) 

where q(s) is the prescribed velocity as a function of arc length s along the boundary 
streamline in physical x,y,z space. 

3.1 Physical x,y,z space. - The flow field a t  a point in physical x,y,z space has 
two stream surfaces of constant yt and Q, respectively, that intersect the potential 
surface a t  90° and intersect one another a t  an angle 8 measured on the potential s u -  
face (ref. 1). The directions of these three intersections are given by the unit vectors 
751,752, and E3, each defined by its direction cosines cos a, cos R, and cos y. Differ- 
ential lengths along the intersections are given by ds, dm, and dn, as shown in the fol- 
lowing figure. 

'1 ,r stream sur face 

i 
9 potential  sur face -/ 



The velocity vector ?i (Flq) is tangent to the intersection of the 9 and q stream 
surfaces so that is normal to the potential surface cp and Jr and q are constant 
along the streamline. 

3.2 Transformed y,,*,-q space. - For a duct, the flow field in transformed cp,*,q 
space becomes a cylinder with a cross section 

the same shape as the upstream boundary configuration in x,y,z space, provided that the 
stream surfaces * and q a t  the upstream boundary are defined by lines of constant y 
and z, respectively (ref. 1). Lines of constant .Jr and (paired values) on the lateral 
"ooundary are streamlines, and the velocity vector q is everywhere parallel to the y, 
axis. The rectangular grid resulting from the intersections of surfaces of constant cp, *, 
and q, for  various specified values of grid spacing a l ,  a2, and as, respectively, is used to 
solve the governing differential equation by finite-difference methods. (The procedure is 
outlined in ref. 1.) Thus, for every internal grid point (numbered 0) in the flow field, a t  
which points the finite-difference form of the governing equation must be satisfied, a 
finite-difference star is formed with six adjacent grid points numbered 1 to 6 and spaced 
a l ,  ..., a6 distance away. 



3.3 Governing differential equation. - From page 28 of part I, the governing, 
se con;--order, partial- dif ferential equation for the distribution of In q in transformed 
c~,*,rl space is 

where q is the local velocity expressed as a ratio of the upstream velocity (q = 1.0 a t  the 
upstream boundary), p is the density expressed as a ratio of the upstream static density 
(p  = 1.0 a t  the upstream boundary), 8 is the distortion angle, which is the angle of 
intersection between the 9 and TJ stream surfaces, as shown by the figure in section 3.1 
(at the upstream boundary where the specified grid is rectangular, 8 equals 90°, i.e., 
there is no "distortion"), K* and Krl are the total curvatures in x9y,z space of the 
and stream surfaces (K* and Krl equal 0 a t  the upstream boundary), and A and B 
are the "continuity" parameters defined by (ref. 1) 

(A and B equal 1.0 a t  the upstream boundary, because there d* = dn and dq = dm.) 

In finite-difference form, equation (3.3.1) becomes (ref. 1) 

where 



("B +-  ah^)( 
acp 



where Q is In q, the numerical subscripts refer to the six adjacent grid points in *,he 
finite-difference star shown in the second figure of section 3.2, and the residual error 
9 equals 0 when the governing equation (3.3.1) is satisfied locally. With the coefficients 
CC, C 1, ..., C6, C o  a t  each internal grid point held constant, equation (3.3.4) is solved 
globally by changing the values of Q O  according to standard relaxation procedures. 
These procedures involve repeated passes (IT counter) through the entire flow field, 
starting a t  the upstream boundary, until the maximum value of 9 in the entire field is 
less than the input value of EPSR. This set of calculations, involving fixed values of the 
coefficients, constitutes one major iteration (ITER counter). The coefficients are then 
recomputed from the new values of Qo, and the procedure is repeated until the solution is 
complete. 

3.4 Direction cosinx. - With the velocity gradients known from the solution of the 
equation (3.3.11, the nine direction cosines associated with the three unit vec- 

tors 'El, F2, and 53 (fig. in section 3.1) are obtained from their gradients in the cp 
direction starting from the upstream boundary. (The boundary is assumed to lie on a y,z 
plane so that cos al, cos R2, and cos y3 are 1.0 and the other six direction cosines are 
zero.) For example, the gradients of the direction cosines of the unit vector T I ,  which is 
in the direction of the velocity vector q, are obtained (ref. 1) from the coqonents  of the 
irrotationality equation normal to the tp and q surfaces and from the direction- cosine 
law 

2 2 2 
cos a + cos R + cos y = 1 (3.4.1) 

Thus, 



where 

cOs 4 0 cos y 
1 

* 
cos q2, C1 cos y 

2 

cos a,, cos R 0 
1 

cos q2, cos R 2  

D = 
1 

cos 4 cos R 
1 

cos y 
1 

cos a 
2 

cos R 
2 

cos y 
2 

cos a 
3 cos R 

3 cOs 3 



and 

Equations for the gradients of the direction cosines of F'2 and '53 in the cp direc- 
tion are obtained in part I of this report (ref. 1) in a similar manner. In (the present) part XI, 
however, the expressions for C$ and C: (eqs. (22f) and (23f) in part I) have been 
reformulated, by making use of the continuity equations ( 1 6 ~ )  and (16d) in reference 1, t o  
give 

and 

Finally, again by making use of the continuity and irrotationality equations in part I, 
equations can be developed (section 5.2) for the gradients of the direction cosines of the 
unit vector Fl in the @ and q directions on potential surfaces. These gradients are 
used in subroutine ANGL (section 5.5). 

3.5 Construction of flow field in x,y,z space. - With the velocity distribution 
known from the solution of equation (3.3.1) in cp,@,q space, and with the distribution of 
the direction cosines likewise known from section 3.4, the shape of the flow field in x,y,z 
space can be constructed. The boundary of this flow field constitutes the design of the 
duct. 

The construction starts in x,y,z space with the arbitrarily specified shape of the 
upstream boundary on the yu ,zu  plane a t  xu = 0, where, for nondimensional variables (as 
defined in ref. 11, @ and q equal y u  and zu, respectively, because the grid is rectan- 
gular (but not necessarily square). 



From each intersection of the grid lines in the figure, a streamline (with constant 
paired values of zp and n) extends to the downstream boundary. The x,y,z coordinates 
of the streamline a t  each successive potential surface (constant cp) are obtained by 
integrating the following equations (eqs. (26a), (26b), and (26c), ref. 1): 

'P cos a 
X = X  + U q dg 

and 

3.6 Alternative construction of flow field in x,y,z space. - An alternative method 
f o r  constructing the flow field is to select one streamline (designated by the indices JX 
and KX as shown on the figure in section 3 3 ,  obtained from equations (3.5.1) to  (3.5.3), 
and to use this primary streamline as a backbone from which to obtain the x,y,z coor- 
dinates of every grid point on each successive potential surface by integrating the fol- 
lowing equations (ref. 1) in the * direction on a potential surf ace, 

and * 
Z = Z  + 

X (7) d* 

and in the q direction on a potential surf ace, 



and 

The continuity parameters A and B in equations (3.6.1) to (3.6.6) are computed by the 
program from equations (3.3.2) and (3.3.31, respectively, by using values of An and Arn 
from the previous iteration. 

The location J X, KX of the primary streamline is arbitrary. However, results 
should be best for locations near the center of gravity of the upstream boundary and 
should be biased somewhat toward the boundary streamlines with the highest prescribed 
velocities if the duct bends. For solutions with planar symmetry, the computer program 
DIN3D1 requires that JX,KX be on the plane of symmetry. 

In the program, both methods (sections 3.5 and 3.6) are used to find the X,Y>Z 
coordinates. This is further discussed in section 4.7, where the input coefficient C A W  
is introduced to allow a weighted average of the two methods. The first method 
(section 3.5) is used in subroutine VARI (section 5.2), where CAVP also is used, and the 
second method (section 3.6) appears in subroutine POTS (section 5.16). 

4.0 ILL-POSED NATURE OF DESIGN METHOD WHEN APPLIED TO DUCTS 

The design method applied to ducts requires two major inputs: (1) the upstaream 
boundary configuration and (2) the velocity distribution on the lateral boundam. The 
lengths As of all streamlines on the boundary are precisely fixed because along each 
streamline 

where q is a known function of cp from equation (3.0.1) or, alternatively, is specified 
directly as a function of cp. Thus, for various upstream boundary configurat,ions, vJlniclz 
for a uniform (constant) upstream velocity with parallel flow must be plane, it appears 
unlikely that the downstream potential surface can also be plane with parallel stream2ines 
normal to the surf ace, as required by the design method. If this is the case, borndam 
conditions are overprescribed and the design problem is ill posed. 

For every prescribed upstream boundary configuration that lies on a flat, potential 
surface as assumed by the design method (section 7.2), there is an infinity of cornlpatiible 
velocity distributions that could exist on the lateral boundary, because there is an infinity 
of lateral boundary configurations for any upstream boundary shape. However, this con- 
sideration does not rule out the possibility of an infinity of lateral velocity distributions 
that are not compatible with the prescribed upstream boundary configuration. 

Now, for a given duct configuration (completely specified) with upstream and do~m-  
stream regions extended so that the upstream and downstream boundaries are flat poten- 
tial surfaces, as assumed by the design method, a specific velocity distribution exists 
throughout the flow field and in particular on the lateral boundary. Presumably, this 
velocity distribution is unique to this duct shape (e.g., pp. 14 to 41, ref. 2); it then folows 



that. for a given lateral velocity distribution there is a unique upstream boundary config- 
uration. Thus, although for a given upstream boundary an infinity of lateral velocity 
distributions exists, as discussed in the previous paragraph, for a given lateral velocity 
distfibution there is only one compatible upstream area configuration. It is concluded 
that the general design method when applied to ducts is ill posed because the boundary 
conditions are overprescribed. However, fortunately, there are "degrees of incompati- 
bility," as considered in the next section. 

4.1 Compatibility between prescribed upstream boundary configuration and lateral 
velocGy distlribution. - For a given lateral velocity distribution, some upstream boundary 
configurations are less compatible than others, For example, a stellated upstream con- 
figuration such as 

would be ""higuy incompatible" with a lateral velocity distribution corresponding to the 
flow through an elbow of constant, circular cross section. An elliptical upstream con- 
figuration with moderate aspect ratio should be "highly compatible" with such a lateral 
velocity distribution. 

Program DIW3Dl has been so constructed that stream-tube areas are adjusted to 
local velocities (by means of the continuity parameters A and B; section 4.2 (con- 
straint 6)), so that, unless the upstream boundary configuration is "highly incompatible," 
the continuity condition is essentially satisfied (the downstream- area error is 
printed) for each of a relatively large number of major iterations (ITER; end of 
section 3.3). The solution a t  first converges for each successive major iteration (as evi- 
denced by decreasing maximum 9 in the flow field). Eventually, because boundary 
conditions are overspecified, the solution must diverge and fail. For "highly incompatible" 
upstream boundary configurations, divergence is rapid and occurs after only a few major 
(ITER) iterations. For ''highly compatible" cases, divergence is gradual and occurs only 
after many iterations. Thus, excellent approximate solutions are obtained by stopping the 
calculations before, or shortly after, divergence begins (section 4.4). 

Finally, the program includes options (WEL equals 2 or 3) for lateral velocity dis- 
Lr ibu t i~n~ that tend toward compatibility with the prescribed upstream boundary config- 
uration. These "equilibrium" velocity distributions are based on the velocity distribution 
in duets sf constant cross section and very large turning angle. Under these conditions, 
near the middle of the turn, the velocity distribution on potential surf aces becomes a free 
voflelg (qr = constant) with r measured from the axis of the turn. A lateral velocity 
distribution around the periphery of each potential surface, based on this free-vortex 
distfibution, and with r related to the upstream surface configuration, constitutes the 
""equilibrium" velocity distribution on the lateral boundary (appendix A). 



4.2 Constraints on calculation procedure. - Because of the ill-posed nature of the 
method when applied to ducts, it is beneficial to guide the calculations by i.rnposing the 
following six constraints, all of which would be satisfied automatically in a well-posed 
case: 

(1) The x,y,z coordinates of every internal grid point in the flow field are connputed 
by two methods (sections 3.5 and 3.6), and the results are averaged according to the input 
value of CAVP, the decimal fraction of the first method that enters into the weighted 
average. Thus, 

0.0 ( CAVP ( 1.0 (4.2.1) 

Although the optimum value of C AVP probably varies with the complexity of the 
upstream boundary configuration and with the lateral velocity distribution, a value of 0.5 
is generally satisfactory (also see section 4.6). 

(2) During the iterative calculations, values of the direction cosines conaputed from 
their gradients (eqs. (3.4.21, e.g.) can become greater than 1 .O. If this occurs, the value is 
set equal to 1.0 by the program. 

(3) Also, during the iterative calculations, the sum of the squares of the direction 
cosines may not equal 1.0, as required by equation (3.4.1). When this occurs, the program 
changes each cosine value by a factor k, where 

1 

2 cos a + cos R + 

(4) At every interior grid point, the unit vector F2, which is tangent to the 
intersection of the q stream surface and the velocity potential surface cp,  must be 
normal to the unit vector El, which is in the direction of the velocity (fig. in 
section 3.1). Thus, 

cos a cos a + cos R cos R + cos y cos y = 0 
1 2 1 2 1 2 

(4.2.4) 

When this relation is not so, the direction cosines of E2 are changed by the program so 
that E2 becomes normal to F1 and the plane of F1 and E2 remains unchanged. This 
same "normality" condition is imposed on the direction cosines of the unit vector Fa in 
the same figure. (Also, see appendix B.) 

(5) Also, from the figure in section 3.1, 

from which 

cos 6 = cos a cos a + cos R cos R + cos y cos y3 2 3 2 3 2 



From the following figure, which shows a stream tube bounded by adjacent surfaces of 

L Potential surface Go 

constant and q, the value of 8 must be greater than 0.0" and less than 180.0"; 
othemise the stream-tube area becomes zero or negative. Thus, if  from equation (4.2.6) 
the absolute value of cos 8 is greater than 0.9962, the program sets cos 8 equal to 
4-0.9 9 62 so that the "distortion" angle 8 lies in the range - 

(6) Finally, the values of the continuity parameters A and B, as computed by 
equations (3.3.2) and (3.3.3), respectively, are changed by the same factor k so that the 
f o l l o ~ n g  continuity condition (eq. (1 Od), ref. 1) is satisfied: 

p sin 8 
AB = 

9 

from which 

4.3 Mode of failure. - For those cases where total failure of the solution is 
approached after a sufficiently large number of major iterations (ITER), which number 
depends on the compatibility condition discussed in a previous section, 4.1, this failure 
usually occws in the downstream region. Here the flow field in x,y,z space distorts as 
s h o w  by the following examples. 



ITER = 8 

The lateral surfaces diverge, and the "distortion" angle 8 (constraint (S), section 4.2) may 
vary rapidly and greatly from its initially undistorted value of 90" a t  the upstream bound- 
ary (fig. in section 3.5). All of these distortions result from an accumulatioln of mreal 
values of In q near the downstream boundary. This accumulation appears to result from 
the relaxation procedure, which always starts a t  the upstream boundary and marches 
through to the exit, continually pushing the effects of the ill-posed problem toward the 
downstream boundary. The constraints discussed in section 4.2 maintain an apparently 
well-behaved flow field elsewhere. (In section 4.8 the distortion near the dovvnstream 
boundary is found to be essentially independent of the extent of the downstream region, 
supporting the preceding reasoning.) 

4.4 Input option ISOLV. - As stated in section 4.1, excellent approximate solutions 
can be obtained for prescribed upstream boundary configurations and lateral velocity 
distributions that are moderately compatible. These solutions are achieved by stopping 
the calculations before or shortly after divergence begins. Input option ISOlLV = I 
assumes that, because of the constraints discussed in section 4.2, an adequately converged 
solution is achieved after four or more major iterations (ITER), provided that the error in 
exit flow area, expressed as a decimal fraction, is less than 0.0033. Also, for ESQLV = 1, 
i f  these criteria are not met, the calculations are then stopped and the solution is printed 
out when the computed value of exit-area error changes sign - provided that the value of 
ITER is greater than 8. In this latter case, the solution may not be acceptable i f  the 
exit-area error (intermediate printout) is changing rapidly as the result of impending 



failure. If none of the criteria are met, the solution continues until the number of major 
iterations equals the input value of ITERMX or until the solution fails entirely. 

For an input value of ISOLV = 0, the solution continues until (1) the number of major 
iterations (ITERB equals the input value of ITERMX, (2) provided that ITER > 4, the max- 
imum value of $22 (eq. (3.3.4)) in the entire flow field a t  the beginning of a major iteration 
is less than or equal to 0.0020, or (3) the solution fails. 

4.5 Effect of ITER on solution. - Because of the ill-posed nature of the design 
method when applied to ducts, all examples must eventually fail (with rare exceptions in 
simple cases) as the number of major iterations (ITER) increases indefinitely. Thus, as 
shown, the solution changes with ITER. The changes are most pronounced in the 

ITER - 4 ITER - 12 ITER = 24 

ITER = 48 ITER = 72 

domstream-area configuration and to a lesser degree in the turning angle of the duct. 
It is suggested that, because the exit velocity is normal to the downstream boundary and 
theref ore not influenced by its shape, large changes in the exit-area configuration can 
result from only minor changes in the lateral velocity distribution (appendix C).  Likewise, 
for the same lateral velocity distribution during an approximate solution, small changes in 
the dovvnstream boundary shape (but not in its area) can be expected from one major 
iteration (ITER) to the next. Because for the larger values of ITER the solution is 
approaching failure, the lower values of ITER are believed to give better approximate 
solutions. For ISOLV = 1, the solution is stopped a t  ITER = 4, provided certain criteria 
are met (section 4.4). 



4.6 Effect of CAVP on solution. - In sections 3.5 and 3.6, two methods are 
discussed for computing the coordinates of the flow field in physical x,y,z space. The 
first method (section 3.51, which results in correct streamline lengths, determines x, y, 
and z by integrating along streamlines between adjacent potential surfaces. (For this 
method, the streamline lengths are correct, but the continuity condition may not be 
satisfied because of the ill--posed nature of the problem and its forced solution.) The 
second method (section 3.6), for which continuity is satisfied, starts from the "primaqi' 
streamline location (JX,KX; fig. in section 3.5) and determines the coordinates by 
integrating in the @ and q directions on potential surfaces. (For this method, the 
continuity condition is satisfied by the essentially correct values of the cont,inuity 
parameters A and B, but the streamline lengths may not be correct.) W e n  moving from 
one potential surface to the next, these two sets of x,y,z coordinates are averaged by 
the input value of CAVP, which is the decimal fraction of the first set that enters into 
the weighted average of the two sets. As shown in the following figures, the effect of 

CAVP = 0.0 CAVP = 0.2 C A V P  = 0.4 



CAVP on the solution for ITE R = 72 is to go from the case where streamlines are normal 
to the domstream potential surf ace but not parallel with each other (C AVP = 0.0) to the 
ease m e r e  the streamlines are parallel but not normal to the potential surface (CAVP = 
1.0). A clearer picture of the difference is given by two side views: 

CAVP = 0.0 

CAVP = 1.0 

For less extreme examples (ITER < <  721, the two methods of computing the x,y,z 
coordinates should give more nearly equal results, and a value of 0.5 for CAVP should 
usually be satisfactory. For more complex upstream boundary configurations and for 
problems involving less compatibility between the upstream boundary shape and the pre- 



scribed lateral velocity distribution, where the solution starts to diverge a t  relatively low 
values of ITER, a better input value for CAVP might be as low as 0.2. However, in 
some cases, because of the numerical integration procedure used by the second method. 
(section 3.6) on the potential surface, the duct wall may develop slightly rippled regions. 
The ripples can be reduced by increasing the input value of CAVP or eliminated by 
setting CAVP equal to 1.0. 

4.7 Effect of duct turning angle on solution. - As might be expected, the greater 
the duct turning angle A@, the lower the value of ITE R a t  which the solution begins t o  
diverge. Or, as a corollary, for the same value of ITER, other things being equal, the 
greater A9, the greater the distortion (if any) near the downstream boundary, as shorn 
by the following figures: 



4.8 Effect of extent of downstream region on solution. - The downstream region is 
that part of the duct near the downstream boundary where the lateral velocity is constant 
and equal to its value a t  the downstream boundary. Because solutions apparently start to 
diverge and distort near the downstream boundary, a question arises as to whether the 
extent of the downstream region influences the magnitude and type of this distortion. As 
the following figures indicate, the distortion is apparently not influenced appreciably by 
the extent of the downstream region. This observation supports the discussion in 
section 4.3 regarding the mode of failure, in program DIN3D1, for ill-posed problems. 

Short  exit 

4.9 EEf ect of complexity of upstream boundary configuration on solution. - Exam- 
ples of solutions with simple upstream boundary configurations and others with relatively 
complex configurations are given by the figures on the next page. Solutions for complex 
configurations require special care in prescribing lateral velocity distributions. Simple 
upstream configurations involve no particular difficulty. 

4.10 Remarks. - In concluding this major section on the ill-posed nature of the 
general design method when applied to ducts, i t  is noted that the method is not ill posed 
when applied to the external design problem (i.e., to the design of bodies with prescribed 
velocities in infinite space). In this case, the velocity on the outer boundaries is every- 
where constant, provided only that the upstream and downstream boundaries, which can 
have any suitable shape (e.g., circular), are sufficiently large. This situation eliminates 
the compatibility problem between prescribed boundary configuration and prescribed 
velocity distribution, but other problems, such as body closure, remain. 

Thus far, it has been implied that the general design method when applied to ducts 
becomes well posed if the upstream boundary configuration is not specified. Under this 
circumstance, it is not clear how, and may not even be possible, to carry out a practical 
design procedure. Nor does it appear desirable, because the designer usually needs to 
retain control over the upstream boundary configuration (which, by reversing the direction 
of flow, becomes the downstream configuration, assuming that configuration needs to be 
controlled). 



Simple (ellipse) Simple (circle) 

Complex (semiannulus)  Complex (general) 



The difficulty of the three-dimensional duct design problem is further increased by 
the likelihood that, irrespective of the upstream boundary configuration, and unlike the 
two-dimensional case, proper solutions do not exist for every lateral velocity distribution. 
The situation is considered in more detail in appendix C. 

5.0 BRIEF DESCRIPTION OF COMPUTER PROGRAM DIN3Dl 

Program DIN3Dl is written in standard Fortran IV. Double precision is required for 
computers with 32-bit words. In addition to the main program, there are 21 major sub- 
routines, 3 minor subroutines, and 8 external functions. The main program and the major 
subroutines are briefly described in this section. 

5 , l  Main program. - The main program governs the solution, as shown on the sim- 
plified flowchart. The integer I designates a potential surface, starting with 1 a t  the 
upstream boundary and ending with NI a t  the downstream boundary; the integer IT 
counts the number of passes through the entire flow field (I = 2 to I = NI - 1 = MI), all 
with the same global set of coefficients in the finite-difference equation (3.3.4); and the 
integer ITER counts the number of major iterations, each with an improved set of coef- 
ficients determined from the previous major iteration. 

v 
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In general, the design procedure in program DIN3D1 is as outlined under Numerical 
Procedure on pages 56 and 57 in part I (ref. 1) of this report. The overall approach is to 
solve (in subroutine RELAX) the finite-difference form of the governing differential 
equation (3.3.4) everywhere on one potential surface a t  a time, starting a t  I = 2 (the first 
surface downstream from the upstream boundary) and marching through the entire flow 
field to I = NI1. This procedure is continued (counter IT), with the same global set of 
coefficients in the finite-difference equation (3.3.4), until the maximum residual error 
RESMAX (flowchart) encountered anywhere in the flow field is less than the input value 
of E P S R ,  or until IT equals the input value of ITMAX. At this point, a new set of 
coefficients is generated (in subroutine C OEF, by using major parameters detemined in 
subroutine VARI); the error ( E R R A R )  in the downstream boundary area (expressed as a 
decimal fraction of the correct value) is computed (flowchart); and the procedure is 
repeated. This process is continued (counter ITE R) until the maximum residual error 
REMAX (flowchart) encountered anywhere in the flow field on the first pass with a new 
set  of coefficients is less than 0.002 (provided ITER > 41, or until the value of lTER is 
equal to the input value of ITERMX (flowchart). This concludes the solution of the 
governing equation (3.3.4), which, as indicated on the flowchart, may also be concluded 
sooner if the input value of ISOLV is equal to 1 (section 4.4). 

The flowchart for the main program involves 10 (of 21) major external. subroutines. 
These are described shortly. 

5.1.1 Input ICONX. - In the main program, to achieve better accuracy and to speed 
up the-solution, the new global set of coefficients (for the governing equation) calculated 
after each major iteration (ITER) is iterated (counter ICON). This iteration is continued 
until ICON is equal to the input value of ICONX (flowchart). However, to further 
shorten the solution time, the value of ICONX is reduced by 1 after every seven major 
iterations (ITER) until a minimum value of 3 is attained, after which ICONX remains 
constant. (If the input value of ICONX is less than 3, it is changed to 3 in the main. 
program and remains constant.) 

5.2 Subroutine VARI. - Except for the main program, subroutine VARI is the most 
important routine in program DIN3D1. After each major iteration (ITER courater in main 
program), this subroutine determines, a t  every grid point in the flow field, the direction 
cosines of the unit vectors el, F2, and F3 (section 3.4); the x, y, and z coordinates (section 
3.5); and the parameters A, B, and 8 and the coefficient CC (sections 3.3 and 4.2 
(constraint 5)). The procedure is outlined in the simplified flowchart. In general, this 
procedure is as outlined in part I of this report (pp. 56 and 57, ref. I). For a given polen- 
tial surface I, the overall approach in subroutine VARI is to compute the direction cosines 
of the unit vectors Fl, F2, and 753 on potential surface I + 1 from their knom values on 
potential surface I and from their derivatives with respect to cp on both the I and I + 1 
surfaces, as given by equation (3.4.21, for example. Because the derivatives of the direc- 
tion cosines on surface I + 1 depend on the direction cosines themselves, the procedure is 
iterated three times (IT2.EQ .3, flowchart). Afterward (IT1 .GT. 1, flowchart) the direction 
cosines of the unit vector F1 are determined in subroutine ANGL (flowchart) by a new 
method based on their known values a t  the primary streamline location (specified by the 
input values of JX and KX; section 3.6 and fig. in section 3.5) on potential surface T + I 
and from their derivatives with respect to and q. 
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These =@ and rl derivatives of the three direction cosines of Fl are obtained by the 
following procedure. The derivatives with respect to * are obtained from the simulta- 
neous solution of the following three equations: (1) the derivative of the direction- 
cosine law (eq. (3.4.111, (2) the continuity equation ( 1 6 ~ )  from reference 1, and (3) the 
equation (5.2.1 ). This equation is obtained by adding the irrotationality equations (1 4c) 
and (14d) from reference 1 to obtain a cos 8/acp, after which equations (13g), (1 6c), and 
(l6d1, also from reference 1, are introduced to give 



In a similar fashion, the derivatives with respect to TI are obtained from (1) the 
direction-cosine law, (2) the continuity equation (16d), and (3) equation (5.2.1) combined 
with equation (13g) from reference 1 to give 

This new method for finding the direction cosines of F1 is needed to achieve truly 
parallel flow in the downstream boundary region. Using this method in subroutine ANGL, 
the procedure (in subroutine VARI) is to iterate NTRY additional times (where, i f  the 
i n m  value of NTRY is less than 2, the program sets NTRY equal to 2). - 

Finally, as shown in the flowchart, subroutine VARI determines the x,y,z coor- 
dinates of the physical flow field (sections 3.5 and 3.61, the distortion angle 8 (section 4.2 
(constraint 511, the continuity parameters A and B (section 4.2 (constraint 6)), and the 
coefficient CC, which is required by the finite-difference equation (3.3.4). 

Subroutine VARI is called from the main program (section 5.1) and from subroutine 
PUTOUT (section 5.18). 

5.2.1 ICX, ICY, and ITH counters. - If the three simultaneous equations (e.g., 
eq. (3.4.2)) for the derivatives of the three direction cosines of each of the unit vectors - e l ,  F2, or Z3 are not independent, their determinant D will become zero. Thus, in 
subroutine VARI, if -0.00001 < D < 0.00001, D is set equal to ~0.00001, and the counter 
IC X is increased by 1. (This condition can occur when the solution is diverging, and 
failure usually occurs soon after.) If, for a given potential surf ace I, the value of ICX is 
greater than zero, a CAUTION note appears in the intermediate printout, or if the value 
is greater than 10, another note appears and the solution is stopped. 

If the absolute value of any direction cosine, obtained in subroutine VARI from the 
derivatives of the three direction cosines, is greater than 1.0, that value is changed t o  
+ 1.0, and the counter ICY is increased by 1. If, for a given potential surface I, the value - 
of ICY is greater than zero, a CAUTION note appears in the intermediate printout, If 
the value is greater than 10,  another note appears and the solution is stopped. 

Also, in subroutine VARI, the "distortion" angle 8 is constrained to values between 
5' and 175' (section 4.2 (constraint 51). If 8 is less than 5" or greater than 175", cos 8 is 
set equal to 0.9962, and the counter ITH is increased by 1. If, for a given potential sur- 
face I, the value of ITH is greater than zero, a CAUTION note appears in the interme- 
diate printout. If the value is greater than 10, another note appears and the solution is 
stopped. 

5.2.2 Averaging coefficients CAVD, CAW, CAVX, CAVY, and CAVZ. - In 
subroutine VARI, during the iterations involving direction cosines and their derivatives, 
the new values are averaged with the previous values by the input values of CAVX and 
CAVD, respectively, where CAVX and CAVD are the decimal fractions of the previous 
(old) values entering into the weighted average. 

Likewise, the input values of CAW, CAVY, and C AVZ are the decimal fractions 
of the previous values of the continuity parameters A and B, the coefficient C 
(eq. (3.3.4)), and the cosine of the "distortion" angle 8, respectively, that enter into the 
weighted average with the respective new values. 



For design problems involving lateral velocity distributions to achieve the desired 
shapes of the downstream boundary, the input value of CAVN can be as as low as 0.0, 
and certainly no higher than 0.1. In effect, the new values of A and B are not averaged 
vvith the previous values. 

5.3 Subroutine AE RIA. - Given the incremental lengths S 1, . . . , S 6, shown in the 
figure, subroutine AERIA determines the incremental area DAREA of an incremental, 

cumed surface bounded by four, essentially straight, incremental lines. The area is 
divided into two sets of triangles by S5 and S6. For each of these four triangles 

where 

Thus, s is the semiperimeter of the triangle, and a, b, and c are the lengths of its three 
sides. Subrou'cine AERIA is called from subroutine ERIA, where it is used to compute the 
area of potential surfaces. Starting with subroutine AERIA, the subroutines are discussed 
in a&habetical order. 

5.4. Subroutine AKA. - Subroutine AKA assures that the sum of the direction 
cosines squared is equal to 1 .O. (section 4.2 (constraint 3)). Subroutine AKA is called from 
subroutines ANGL, FINIS, and VARI. 

5.5 Subroutine ANGL. - On potential surface I + 1, subroutine ANGL determines 
the distfibution of the direction cosines of 51, starting from the location of the primary 
streamline (input values of JX and KX) and integrating along lines of constant -+ and q 
(eqs. (5.2.1) and (5.2.2)). Subroutine ANGL is called from subroutine VARI. 

5.6 Subroutine BOUND. - The physical x,y,z coordinates of the flow field a t  all 
intefior grid points are determined by subroutine VARI. Using these values on a given 
potential surf ace I, subroutine BOUND extrapolates to determine the coordinates XB, 
VB, and ZB (and the velocity QB) a t  every contour point along the boundary of the 
potential surface. Subroutine BOUND is called from subroutine PUTOUT. 

5.7 Subroutine C OEF. - On potential surf ace I, subroutine C OEF determines the 
values of the coefficients CO, C1, C2, etc., in the finite-difference form of the governing 
differential equation (3.3.4). Subroutine COEF is called from the main program. 



5.8 Subroutine ENGL. - On potential surface I + 1, subroutine ENGlL determines 
the @ and II derivatives of the direction cosines of gl. These derivatives are required 
to obtain the direction cosines of El.  Subroutine ENGL is called from subroutine ANGL. 

5.9 Subroutine ERIA. - On potential surface I, subroutine E RIA computes the flow 
area (dimensional) of the potential surface. Subroutine ERIA is called from subroutine 
FINIS. 

5.10 Subroutine FINIS. - Starting a t  potential surface NI - 1, subroutine FINIS 
determines the values of A, B, THET, and CC, and of the x,y,z coordinates a t  every 
internal grid point on the downstream potential surface NI. This subroutine assumes that 
a t  the downstream boundary the cp derivatives of all direction cosines are zero. Sub- 
routine FINIS obtains the downstream flow area a t  NI - 1 by calling subrouxine ERTA. 
Subroutine FINIS is called from the main program and from subroutine PUTOUT. 

5.11 Subroutine FIRST. - On potential surface I, subroutine FIRST establishes the 
values-'of the variables appearing in the coefficients (eqs. (3.3.5)) of the finite-dif f erenee 
form of the governing differential equation (3.3.5). Subroutine FIRST is called from the 
main program. 

5.12 Subroutine FLAR. - Subroutine FLAR computes the sum (EXFLAR) of all 
incremental flow areas bounded by four internal grid points on potential surface I. Sub- 
routine FLAR is called from subroutine ERIA, which adds to the value of EXFLAR all o f  
the incremental areas adjacent to the potential surf ace contour. 

5.13 Subroutine GRID. - Subroutine GRID determines the area of the upstream 
boundary surface and the distance P around its contour. This subroutine also determines 
the grid spacings a2, a3, as, and a6 (second fig. in section 3.2) on the potential surfaces. 
Further details regarding the potential surface grid are given in section 7.1 of this report. 
Subroutine GRID is called from subroutine PUTIN. 

5.14 Subroutine ONEST1. - On potential surf ace I, during the first major iteration 
(ITER = 1 only), subroutine ONESTl determines the parameters A, B, CC, and THET a t  
every internal grid point. This subroutine assumes that the total curvatures Kq and K* 
of the stream surfaces are zero, that cos 8 (i.e., THET) is also zero, that 

and that 

Subroutine ONESTl is called from the main program. 

5.15 Subroutine PARAM. - On potential surface I, subroutine PARAM detemines 
the values of all variables required to compute the coefficient CC in equation (3.3.4). 
Subroutine PAR AM is called from subroutine VARI. 

5.16 Subroutine POTS. - On potential surface I + 1, subroutine POTS detemines 
the distribution of the x,y,z coordinates of the internal grid points, starting from the 
known values of x, y, and z for the primary streamline a t  JX,KX (fig. in section 3.5) and 
integrating in the @ and TI directions (section 3.6). Subroutine POTS is called from 
subroutine VARI. 



5.17 Subroutine PUTIN. - Subroutine PUTIN reads and writes all input data required 
by DN3D1. Detailed descriptions of these data are given in section 7.3. Sub- 
routine PUTW is called from the main program. 

5.18 Subroutine PUTOUT. - Subroutine PUTOUT prints those results of the solution 
that are requested by subroutine PUTIN. There are three output tables: (1) output table I 
(internal grid points), (2) output table 11 (coordinate points along contours of selected 
pokntial surfaces), and (3) output table 111 (coordinate points along selected streamlines). 
For details of the data reported in each of these tables, see section 8.0. Subroutine 
PUTOUT is called from the main program. 

5.19 Subroutine RELAX. - At every interior grid point on potential surface I, sub- 
rom& RELAX reduces the residual error 9 (section 3.3) to an absolute value less than 
the current value of EPSX by varying the value of Q O  in the finite-difference equation 
(3.3.4). (The initial value of EPSX, which is 400 times the input value of EPS R ,  
decreases 12 times by a factor of 0.5, after which its final value is approximately 0.1 
times the input value of EPSR.) This subroutine uses an overrelaxation coefficient, the 

value of which is 0 RELAX. The relaxation process is continued until the maximum 
residual error everywhere on the potential surface is less than 0.1 times the input value 
of E P S R  or until ITX is equal to the input value of ITXMAX, whichever occurs first. 

During the relaxation process the program marches across the potential surf ace first 
from left to right (increasing p index J),  then from top to bottom (decreasing q index 
K), next from right to left (decreasing J), and then from bottom to top (increasing K). 
Subroutine RELAX is called from the main program. 

5.20 Subroutine RESID. - Subroutine RESID determines the residual error a t  every 
i n t e ~ o r  grid point on a given potential surface I. Subroutine RESID is called from the 
main program. 

5 2 1  Subroutine START. - For ITER greater than 1, subroutine START establishes 
the values of certain variables El, iZ2 , iZ3, x, y, z, Q, RHO, THET, A, and B) a t  potential 
surface I = 1. Subroutine START is called from the main program and from subroutine 
PUTOUT. 

5.22 Subroutine VELD. - From various input data, subroutine VELD determines the 
input velocity distribution on the lateral boundary of the flow field. From this distribu- 
tion, it estimates initial values of velocity a t  all interior grid points. For more detailed 
discussion of the input velocity distribution on the lateral boundary, see section 7.2. 
Subroutine VELD is called from subroutine PUTLN. 

6.0 MISCELLANEOUS FEATURES OF PROGRAM 

Vahjious special features of the program, in addition to those already discussed, are 
descfibed in this section. These features relate mainly to user options and to input param- 
eters affecting the running time and accuracy of the calculations. 

6.1 Option IFLUID. - The input option IFLUID relates to the type of fluid used in 
the d&t design. At present, provision has been made for two types: incompressible fluids 
(IFEUID = 11, and perfect gases (IFLUID = 2). For incompressible fluids, no additional 
inputs are required (e.g., the fluid density is not required). For compressible fluids, two 
additional inputs are required: the upstream Mach number AMU, and the ratio of specific 
heats GAM. 



The following three figures show that compressibility, as measured by AMU (all 
other factors, including the ratio 2.0 of downstream to upstream velocitya being equal), 

Incompressible; A8 - 115.52' 

AMU = 0.01: A8 - 1 1 5 . 5 ~ ~  

AMU - 0.40; A8 = 110. %O 



affects the turning angle, and of course, the magnitude of the downstream area. The 
incompressible solution and that for AMU = 0.0 1 are essentially equal. 

If other types of fluid are required, additions can be made to the code in subroutine 
PUTN.  Of course, appropriate additions to the code must be made throughout the pro- 
gram, wherever the static density ratio p appears. 

6.2 Option ISYM. - Many duct designs have planar symmetry; that is, the duct 
s h a p e n  one side of the plane is a mirror image of that on the other. If the prescribed 
lateral velocity distribution has planar symmetry, so also will the resulting design, pro- 
vided that the prescribed upstream boundary configuration is also symmetrical about the 
plane. For cases involving planar symmetry, provision is made in the code for solving only 
one of the two flow fields on either side of the plane of symmetry. This provision cuts the 
running time roughly in half, or alternatively permits a finer grid with the existing 
21-by-35 array size. 

The input option ISYM relates to three types of symmetry: first (ISYM = 11, there 
is no symmetry, or if planar symmetry exists, it is not made use of; second (ISYM = 2), 
there is, as shown in the followi~lg figures, 

ISYM = 1 

ISYM = 2 



symmetry about a plane of constant y (i.e., a plane normal to the y axis of the upstream 
boundary (fig. in section 3.5)); and third (ISYM = 3), there is, as shown in the following 
figure, symmetry about a plane of constant z. 

ISYM = 3 

Both types of planar symmetry have been introduced because in program Dm3D1 
the 21-by-36 arrays corresponding to the y and z directions, respectively, are not 
square. 

6.3 Option IPLOT. - Because the output for three-dimensional solutions is usually 
very large, some sort of graphics display is almost a necessity. In program DINSD1, the 
display data consist of the x,y,z coordinates of selected points along the contow of 
every selected potential surface IPS(200). These same points correspond to selected 
streamlines ISL(200) on the lateral boundary. The result is a three-dimensional plot of 
the lateral boundary of the flow field (i.e., the duct surface) consisting of a nletwork of 
potential surface contours and streamlines as shown by figures in this report. (These same 
data are also printed in output table I1 (contour data, section 8.3) and output table III 
(streamline data, section 8.4).) 

These display data are obtained by setting the input value of option IPILOT equal 
to 1. (For no graphics display data, the input value of IPLOT is zero.) These graphics 
data, which normally go to tape or disk, are provided for a t  the end of subroutine I?UTO%IT 
(section 5.18). I t  is assumed that a three-dimensional graphics program is available to the 

- - 

user, and only the following raw data, in the order presented, are supplied by program 
DN3D1: 

total number of potential surfaces from upstream boundary to 
downstream boundary. (NI is computed by the program from the 
input value of NP (number of potential surfaces for which data 
are specified) and NSD (number of equal subdivisions along the 
principal streamline between each of the NP potential surfaces); 
NI = (NP - l )NSD+ 1.) 

total number of contour points around each potential surface. 
(Each contour point corresponds to a streamline on the lateral 
boundary, so there are NCP streamlines.) 



number of potential surfaces to be plotted and printed out in 
table 11 (maximum, 200) 

number of streamlines to be plotted and printed out in table III 
(maximum, 200) 

index values IY of NPS potential surfaces to be plotted and 
printed (maximum, 2 0 0) 

index values IX of NSL streamlines to be plotted and printed 
(maximum, 2 0 0) 

XB(ISL(IX),IPS(IY)) x,y,z coordinates of contour points around potential surfaces 
YB(ISL(IX),IPS(ITIII and corresponding points along stre amlines on lateral boundary 
ZB(ISL(IX),IPS(IY)) 

6.4 Overrelaxation factor (0 RELAX). - At any point in the cp97p,q flow field, the 
residlhlal error 9 in the governing equation (3.3.4) can be eliminated by an incremental 
change AQg in the local value of Qo. From equation (3.3.41, this value for AQo is 
given by 

To speed up the iterative process involved in the global solution of equation (3.3.41, the 
local incremental changes given by equation (6.4.1) are multiplied by the input value of 
the overrelaxation factor 0 RELAX. Thus, 

1.0 ( ORELAX < 2.0 (6.4.3) 

The optimum value of 0 RELAX for the shortest running time probably varies somewhat 
with the bolnradary conditions of the problem. A preliminary investigation indicated an 
approximate value of 1.35; however, the user is encouraged to try other input values. 

6.5 Accuracy (EPS and EPSR). - The input values of EPS and EPSR determine 
the accuracy of various iterative processes in the program. The input value of EPSR 
relates to the solution of the governing equation (3.3.4) by finite-difference methods. It 
is the m a x i m  allowable value of the residual error a t  any point in the flow field 
after the iterative solution has been completed globally for a given (fixed) set of the 
coefficients Cc, Co, ..., C6. The input value of EPS relates to other iterative processes. 

The program uses double precision. The input values of EPS and EPSR used for 
the examples in this report were both 0.000005 and occasionally an order of magnitude 
less. Because of the dimensionless form under which the solutions are obtained, the 
m a ~ i t u d e s  of EPS and EPSR are independent of the size of the flow field. However, 
for cowarable accuracy in solving the governing equation (3.3.4), the greater the number 
of grid points on a potential surf ace, the smaller the input value of EPS R,  because the 
smaller will be the dimensionless grid spacings a l ,  ..., a6 in the coefficients of equation 
(3.3.4). 



7.0 INPUT TO PROGRAM 

The two major inputs to the program are the shape of the upstream bounda-ry with 
its associated grid and the velocity distribution on the lateral boundary of the duct. These 
inputs are discussed in detail in the next two sections, after which a formatted, line-by- 
line description of the complete input is given. This latter section consti"crLes a users 
guide for preparation of the input. 

7.1 Upstream boundary shape and associated grid. - The shape of the upstream 
boundary is specified by the coordinate points of its contour on the y,z plane f o r  x = 0. 
These coordinate points are located a t  every intersection of the contour with a specified 
(input) grid of Y G( J )  and ZG(K) lines in the Y ,Z plane. Thus, 

The coordinate points [YC(l ) ,  ZC(l)]j, ..., (YC(NCP), ZC(NCP)] are numbered counter- 
clockwise and consecutively from 1 to NCP, where the maximum allowable value of 
NC P is 200. The starting point is arbitrary, except for cases using planar symmets^y 
(ISYM equal to 2 or 3), which are discussed later. The YG(J) and ZG(K1 grid lines, a t  
which the contour coordinate points occur, are numbered 1 to NJ and 1 to NK, 
respectively, where the maximum allowable values of NJ and NK are 21 and 36, 
respectively. 

The spacing (a2, a3, as? and a6) of the grid lines is arbitrary, except that a t  least 
three internal grid points (i.e., intersections of grid lines) must lie along every internal 
grid line segment bounded by the contour and a t  least two external grid points must lie 
along every external grid line segment bounded by the contour. It is also prudent to keep 
the grid spacings as nearly constant as the contour shape and other considerations pernit  
and not too different from the a1 and a4 spacing in the cp direction (second fig. in 
section 3.2). Of course, grid size af f ects running time. Doubling the grid spacing on 
potential surfaces, but leaving the spacing between potential surfaces unchanged, 
decreased CPU time by more than 75 percent in the following examples. 



Fine grid: ITER = 12); 37013033 CPU time, 132.01 m i n  Coarse grid (spacing doubled); ITER = 10; 37013033 CPU time, 29.64 m i n  

The shape of the contour is completely arbitrary (but see section 4.1) except that 
(see following figure) (1) every contour point must be the end point of a t  least one internal 
grid line, ( 2 )  any interior straight line drawn between two contour points that are not 
adjacent must. cut a t  least one grid line, and (3) unless a contour point lies on a grid point, 
it must be a t  least 10 times the input value of EPS away from any interior grid point. 



Because of the approximate nature of the solutions (section 4.01, a "kink" may 
develop in the duct boundary if an external grid point is too close to two adjacent contour 
points along the boundary, particularly if the upstream boundary configuration is too 
complex or convoluted. This "kink" occurs because the x,y,z coordinates a t  boundasy 

2 

1 
Boundary 

point A are obtained by extrapolating from the corresponding values a t  the interior 
points 1, 2, and 3, whereas the coordinates a t  boundary point B are obtained by exlrap- 
olating from the interior points a, b, and c. The "kink" is most easily eliminated by 
shifting one of the two grid lines so that the points A and B come together as s h o w  in 
the following figure. 



For planar symmetry solutions (section 6.2), only one of the two symmetrical halves 
of the upstream boundary configuration is used. If the plane of symmetry is normal to the 
U axis (ISYM = 2 )  as shown, the left half must be used, and the contour points are num- 
bered in the counterclockwise direction from 1 to NCP, starting a t  the plane of 
symmetq, 

/- Y plane of symmetry 
(through grid line) 

Y 

If the plane of symmetry is normal to the Z axis (ISYM = 31, the lower half must be 
used, and the contour points are numbered in the counterclockwise direction from 1 to 
NCP starling a t  the plane of symmetry as shown. Note that for ISYM equal to both 2 

,- Z plane of symmetry 
I' (through grid line) 

I P = 1  / 

and 3, the location (JX,KX) of the primary streamline must be on the plane of 
symmetw. 

These various upstream boundary contours in physical X,Y,Z space are also the 
shapes of all potential surfaces in transformed cp,@,v space, because paired values of Y 
(equals 9Cr) and Z (equals q) are constant along streamlines (section 3.2). 

7.2 Prescribed velocity distribution on surf ace of duct. - The velocity distribution 
on the lateral boundary of the duct could be specified in a perfectly general, continuous 
way (but see section 4.1) a t  each of the NCP coordinate points along the boundary 
contour (section 7.1) for each of the M potential surfaces from the upstream boundary 
(1 = 1) to the downstream boundary (I = NI), where the maximum allowable value for both 
NGP and NI is 200. Because this is a large amount of input data (200 x 200), for conven- 
ience, in program DINSDl, the velocity distribution on the lateral surface is specified by 
two components. First, the distribution of velocity QP(I) is specified as a function of 
distance SP(T) along the principal streamline (input value of IP; figs. in section 7.1). 
Thus, 



Proqram assumes straiqht lines 

where QP(I) is expressed as a ratio of the upstream velocity, and the dimensional unit 
for SP(I) is the same as for YG( J )  and ZG(K) (section 7.1). The velocity QP(I) is 
constant in the upstream and downstream regions, which regions should nomally be a t  
least two hydraulic diameters of their respective flow areas in extent. These regions of 
constant velocity on the lateral boundary are required to justify the assumption of con- 
stant velocity over the upstream and downstream flow areas. 

Second, but only if the input value of option IVEL is 1, the velocity variation DQ 
around the contour of each potential surface, which contour in cp,+,-q space is the same 
as the upstream contour (section 7.1), is specified by 

Decimal fraction, P, of  distance around contour 

In this figure, DQAMP(1) is the amplitude (plus or minus) of the velocity variation DQ 
and P is the decimal fraction of the distance around the contour. The XP(I1 value of P 
locates the principal streamline IP relative to the velocity variation with P. The vasi- 
ation in velocity with P is, therefore, specified for all potential surfaces by DPOB(T), 
DP12(I), DP23(I), DQAMP(I), and XP(I) as functions of SP(I) from I = 1, ..., M. As for the 
distribution of Q P (I) in the previous paragraph, the distributions of these parameters 
should also be constant in the upstream and downstream regions, and the values of 
DQAMP(I1 must be zero. 

In the regions of P defined by DPOl(1) and DP23(I) in the figure, the velocity 
variation DQ is given by the cubic equation 



where the four coefficients a, b, c, and d are fixed by the four conditions 

a t  the two end points 

DQ = 0 a t  one end point 

DQ = DQAMP(1) a t  the other end point 

To simplify the input further, values of these parameters, as well as of QP(I), need 
not be specified a t  all values of I, but only a t  NP values, where 

NI = (NP - 1) NSD + 1 (7.2.2) 

in which NSD is the specified (input) number of equal subdivisions between adjacent, 
specified NP values of the parameters. The program assumes linear variations in the 
parameters between the specified values. 

For the 'keqiilibrium" velocity distributions described in appendix A (input values of 
option IVEL equal to 2 or 31, in addition to the prescribed velocity QP(I) as a function 
of distance SP(I) along the primary streamline, only the amplitude DQAMP(1) of the 
velocity variation DQ (see previous fig.) is specified. The parameters DPO 1 (I), DP 12(I), 
DP23(IP, and XPU) must be omitted. Also, if the input value of ISYM is 2, the input 
value of IVEL must not be 3; and if the input value of ISYM is 3, the input value of 
XVEL must. not be 2. 

Option WEL = 4 can be used only with option ISYM equal to 2 or 3 (planar symme- 
try cases), Here, only the parameters DP23(I) and XP(I) must be omitted, it being 
mderstood that for planar symmetry 

and 

As for optional input IFLUID (section 6.11, provision is also made in subroutine 
PUTIN for adding new types of option IVEL by additions to the code, and of course, 
appropriate additions to the code must also be made in subroutine VELD. 

7.3 k-ine-by-line input for program DIN3D1. - This section should be used when 
preparing the formatted, line-by-line input for program DIN3D1. It is also recommended 
that sections 7..1 and 7.2 be reviewed before starting. 

L i e  1 - FORMAT(20A4) -- 
TITLE title (center on field of 80 characters) 

Line 2 - FORMAT(20A4) -- 
SUBTl first subtitle (center on field of 80 characters) 

Line 3 - FO R.MAT(20A4) 
SUBT2 second subtitle (center on field of 80 characters) 



Line 4 - FORMAT(7110) 
IFLUID option equals 1 for incompressible flow, 2 for perfect gas (section 4.1)  

ISYM option equals 1 for complete flow field, 2 for half flow field with planar 
symmetry about y plane, and 3 for half flow field with planar symmetny 
about z plane (sections 6.2 and 7.1) 

IG R ID option equals 1 for Cartesian YG( J),ZG(K) grid a t  upstream boimdaryr 
(only option) (section 7.1) 

rVEL option equals 1 for standard, two-component, parametric method of 
specifying velocity distribution on lateral boundary of duct (section 7.21, 
2 for "equilibrium" velocity distribution with turn in y plane (sections 
4.1 and 7.2 and appendix A), 3 for "equilibrium" velocity distribution with 
turn in z plane (sections 4.1 and 7.2 and appendix A), and 4 for eases 
with ISYM values of 2 or 3 only (section 7.2) 

IPLOT option equals zero for no graphics output, 1 for three-dimensional 
graphics output (section 6.3) 

IS 0 LV option equals zero if built-in criteria for successful solution are not 
used, 1 if criteria are used (section 4.4) 

ISPACE option equals zero if grid spacings (second fig. in section 3.2) for all 
internal grid points are not printed in output (space-saving option), l if 
spacings are printed 

Line 5 - FORMAT(SI10) 

ITE RMX maximum number of major iterations (ITER) allowed; value depends on 
circumstances of case involved (sections 3.3, 4.4, 4.5, and 5.1) 

ITMAX maximum number of IT iterations allowed (each iteration involves 
entire flow field; values of coefficients CC, Co, C1, ..., Cg in eeqation 
(3.3.4) are unchanged for all IT iterations; recommended value is 250) 
(sections 3.3 and 5.1) 

ITXMAX maximum number of passes allowed for iterative, finite-difference 
solution of governing differential equation (3.3.4) on a given potential 
surface cp; recommended value is 100 (section 5.19) 

IC ONX maximum number of ICON iterations, in main program, on coefficients 
of governing equation (3.3.4); recommended value is 4 and1 cannot be less 
than 3 (section 5.1.1) 

NTRY number of iterations, in subroutine VARI, on values of direction cosines; 
recommended value is 3 and cannot be less than 2 

Line 6 - FORMAT(6F10.3) 

C AVD coefficient for averaging new values of derivatives of direction cosines 
with previous values; recommended value is 0.5 (section 5.2.2) 



C AVN 

C AVP 

coefficient for averaging new values of continuity parameters A and B 
vvith previous values; recommended value is 0.5 or less (section 5.2.2 and 
appendix C) 

coefficient for averaging values (obtained by two methods) of x,y,z 
coordinates a t  each internal grid point; recommended value is 0.5 or less 
(sections 3.6, 4.2(constraint l), and 4.6) 

CAVX coefficient for averaging new values of direction cosines with previous 
values; recommended value is 0.2 (section 5.2.2) 

CAVY coefficient for averaging new values of coefficient C C ,  in the governing 
equation (3.3.4), with previous values; recommended value is 0.5 or less 
(section: 5.2.2) 

CAVZ coefficient for averaging new values of THET (cosine of "distortion" 
angle 8) with previous values; recommended value is 0.5 or less (section 
5.2.2) 

[If IFEUID = 1, incompressible flow, go to line 8.1 

Line 7 - FORMAT(2F10.4) -- 

AMU upstream Mach number (section 6.1) 

GAM ratio of specific heats (section 6.1) 

Line 8 - FORMAT(2110) 

Tx value of J for primary streamline (fig. in section 3.5; sections 3.6, 5.2, 
and 7.1) 

KX value of K for primary streamline (fig. in section 3.5; sections 3.6,  5.2, 
and 7.1) (For input values of ISYM equal to 2 and 3, the primary 
streamline (JX,KX) must lie on the plane of symmetry.) 

Line 9 - FO RMAT(3110) 

Ny number of YG(J) grid lines; maximum value is 21 (section 7.1) 

NK number of ZG(K) grid lines; maximum value is 36 (section 7.1) 

NC P number of contour coordinate points around upstream potential surface; 
maximum value is 200 (sections 6.3 and 7.1) 

YG(J) NJ values of Y grid lines; same dimensional unit of length used for SP 
on line 15; 6-decimal accuracy recommended (sections 3.2, 3.5, and 7.1) 

Line 11 - FORMAT(8F10.6) 

ZG(K) NK values of Z grid lines; same dimensional unit of length used for SP 
on line 15; 6-decimal accuracy recommended (sections 3.2, 3.5, and 7.1) 



Line 12 - FORMAT(8Fl0.6) 

Y C (IX) NCP values of Y for coordinate points along boundary contour starting 
a t  contour point 1 (which has arbitrary location for ISYM = 1 but must 
lie on the plane of symmetry for ISYM equal to 2 or 3); contour points 
must be read sequentially in counterclockwise direction; same 
dimensional unit of length used for SP on line 15; 6-decimal accuracy 
recommended (sections 3.2, 3.5, and 7.1) 

Line 13 - FORMAT(8F10.6) 

ZC (IX) NCP values of Z for coordinate points along boundary contour starting 
a t  contour point 1; see Y C(IX), above, for further comments 

Line 14 - FORMAT(3110) 

IP contour coordinate point corresponding to principal streamline; for 
ISYM equal to 2 or 3, IP must equal 1; for "equilibrium" velocity 
distributions (IVEL equal to 2 or 31, see appendix A (first and last figs. in 
section 7.1) 

NP number of stations (velocity potential surfaces) a t  which parameters are 
specified for velocity distribution on lateral surface; quantity 
(NP - 1)NSD + 1 must not exceed 200 (section 7.2) 

NS D number of subdivisions between each of the above NP stations 
(section 7.2) 

Line 15 - (NP lines, one for each station), FORMAT(6F10.5, F10.6) 

Q P (I) velocity (ratio) distribution along principal streamline (IP), expressed as 
ratio of upstream velocity; 5-decimal accuracy recommended 
(section 7.2) 

S P (I) distance along principal streamline; any unit of length pemitted, and 
value of SPU) a t  upstream boundary need not be 0.0 (section 7.2) 

DPOl(I) percent of contour length (second fig. in section 7.2); omit if IVEQ 
equals 2 or 3 (section 7.2) 

DP12(I) percent of contour length (second fig. in section 7.2); omit if WEL 
equals 2 or 3 (section 7.2) 

DP23(I) percent of contour length (second fig. in section 7.2); omit if IVEL 
equals 2, 3, or 4 (section 7.2) 

DQAMP(1) amplitude (second fig. in section 7.2) of velocity variation DQ around 
contour of potential surface; velocity expressed as ratio of upstream 
velocity; DQAMP(1) may be positive or negative; DQAMP(1) must be 0.8 



in upstream and downstream regions of duct (first fig. in section 7.2; 
section 7.2) 

XP(I1 location (percent of contour length) of principal streamline relative to 
velocity variation around contour of potential surface (second fig. in 
section 7.2); omit if IVEL equals 2, 3, or 4 (section 7.2) 

Line 1 6  - FORMAT(4110) 

I value of initial potential surface for which output data are printed in 
table I 

I value of final potential surface for which output data are printed in 
table I; 12 5 M (total number of potential surfaces; section 6.3); if  
IZ < IA, table I is omitted in printout 

NP S number of potential surfaces for which output data a t  boundary contour 
points are printed in table I1 (and saved for three-dimensional graphics if 
input value of IPLOT is 1); NPS 5 200; if NPS = 0, table I1 is omitted 
and input line 17 is skipped (section 6.3) 

NSE number of boundary-surface streamlines for which output data are 
printed in table I11 (and saved for three-dimensional graphics if IPLOT 
is 1); NSL < 200; if NSL = 0, table I11 is omitted and input line 18 is 
skipped (section 6.3) 

T%-'S(I) NPS values of the I values of potential surfaces for which output data 
are printed in table 11; numbered sequentially, starting from lowest 
value, but numbers can be skipped (section 6.3) 

Line 18 - FORMAT(8110) 

IS %(I3 NSL values of the I values of boundary contour points for which 
streamline data are printed in table 111; numbered sequentially, starting 
from lowest value, but numbers can be skipped (section 6.3) 

E P S standard maximum allowable error in various iterative procedures; 
recommended value is 0.000005 (section 6.5) 

E P S R  maximum allowable value of residual error 9 in finite-diff erence 
solutions of equation (3.3.4); recommended value is 0.000005 (sections 
3.3, 5.19, and 6.5) 

ORELAX overrelaxation factor (sections 5.19 and 6.4) 



7.4 Sample printout of input data. - Program DIN3D1 prints out the input data in 
the same order in which they are read in. A sample printout of the input data follows. 

D E S I G N  O F  T S R E E - D I I I E N S i S N A L  I N T E R N A L  FLO!.,' F I E L D S  

FG? A ? B I T R k V  i 'RESCRIEED V E L O C I T Y  D I S T 4 T E U T i O N S  

OH LATERAL BOG'!CAEY S!,IRFACE 

C A S E  b15. V 

EL30U C 2  

Q W Q U  = 2 . 0  M-UP = 0 . 4  

I H P U T  D A T A  

C P T I O S S  

I F L U I D  I S Y M  I G R I C  I V E L  I P L O T  I S O L V  XSPACE 

2 1 1 2 1 1 T 

I N P U T  DATA FOR L I M I T S  O N  V A R I C U S  I T E R A T I O N  C Y C L E S  

MAX ITEF? MAX I T  PTAX I T X  I C O i l X  NTRY 
I T E R A f 1 O : i S  I T E R A T I O N S  I T E R A T I O N S  I T E R A T I O N S  1 T E R A T I O ; ; S  

I N P U T  D A T A  FOZ V A R I O U S  DAMPING C O E F F I C I E N T S  

CAVE C  A  V I.: CAVP CAVX CAVY 

0 . 5 0 0  0 . 5 0 0  0 . 2 0 0  0 . 2 0 0  0  - 5 0 0  

I N P U T  DATA FOR P E R F E C T  GAS ( I F L U I D  = 2 )  

UPST4EAM R A T I O  OF 
I?iACH E(O. SF'EC H T S  

I N P U T  DATA FCR P R I M A R Y  S T R E A M L I N E  

J - V A L U E  K-VALUE 
( J X )  c::x> 

7 6 



I N P U T  DATA FOR G R I D  SYSTEM ON UPSTREAM BOUf4DARY SURFACE (IGRID = 1) 

NO. OF Y NO. C F  Z NO. O F  P O I N T S  
G!?iD LINES G R I D  LIEEES Obi BOV?I:?AI!Y 

I N P U T  CATA FOR UPSTREAM G R I D  CCONTI>IUED) 

Y - V A L V E  
J OF GRID 

I N F C T  DATA FOR 

K 

UPSTREAM GRID ( C O N T I N U E D )  

2 - V A L U E  
OF G R I D  

I N P U T  DATA F O R  UPSTREAM G R I D  

Y-VALUE 
I O F  CONTOUR 

( C O N T I N U E D )  

Z-VALUE 
OF CONTOUR 



I ? J P U T  DATA FOR V E L O C I T Y  D I S T R I E U T I O N  08  LATERAL BOUNDARY S U R F A C E  C I V E L  = 13 

P R I N C I P A L  N O .  O F  S P E C .  NO. O F  
STR: ,5AI l? IEE STATIO::S S U B D I V I S I O N S  

16 2 9 1 

V E C .  O N  
P R I l C C I P A L  

S T R E A M L I N E  

I N P U T  DATA FOR P R I N T  FORMAT 

DEL-Q 
A M P L I T U D E  

9.090000 
0.5000110 
0.003080 
O.ii00030 
0 -333300 
0.3030CiQ 
0.OGO000 

-0.019730 
-0.074100 
-0.1553DO 
- 0  -2573C0 
-0 -355500 
-U.425?00 
-3.L.67500 
-3 .c,81400 
-0.457600 
-0.425300 
-0 -355500 
-0 -259300 
-0.156200 
-0.074100 
-0.015700 
0.000000 
0.000000 
0 .DO0000 
0.000000 
0.005000 
0.900000 
O.OOOC30 

WIN I - V A L U E  MAX 1 - V A L U E  N O  OF P O T  NO O F  
O F  P O T  S'JRF Q F  P O T  SURF S U R F A C E S  S T R E A M L I N E S  

( T A B L E  I )  ( T A B L E  I) (TABLE  I I )  ( T A B L E  11;) 

1 2 9 2 9 2 a 



INPUT DATA F O R  POTENTIAL SURFACES (TABLE 1x1 

NUMBER (NPS) OF POTENTIAL SURFACES = 29 
1-VALUES O F  POTENTIAL SURFACES: 

1 2  3  4 5 6 7 8 

I I 1 2  1 3  1 4  1 5  16  17 18 

2 1 2 2 2 3 2 4 2 5  2 5 27 26 

I N P U T  DATA FOR STREAMLINES (TABLE 1x1) 

NUPTBER (NSL) OF STREAMLINES = 28 

I-VALUES O F  CONTOUR POINTS THROUGH WHICH STREAMLINES PASS: 

1. 2 3 4  5  6 7  8 

I I. 1 2  1 3  1 4  1 5  16  17 1 8  

2 1 2 2  2 3  2 4  2  5 2 6 27 28 

IPiPUT DATA RELATED TO ACCURACY OF CALCULhTIQNS 

EPS EFS-R 0-RELAX 

0 . 0 0 0 0 0 0 5  0 .0000005  1 . 3 5 0 0  



8.0 OUTPUT FROM PROGRAM 

The five major outputs from the program are (1) an intermediate printout generated 
as the solution progresses; (2) output table I, with data a t  the internal grid points for the 
selected range (IA to IZ) of potential surfaces in x,y,z space; (3) output table 11, with 
data around the contours of selected potential surfaces in x,y,z space; (4) output 
table 111, with data along selected streamlines over the full range of potential surfaces 
(I equals 1 to NI); and (5) output data to tape or disk for three-dimensional graphics, 
provided that the input value of IPLOT is 1. Before printing these five outputs, the 
program prints out (1) the maximum Mach number along the principal streamline and 
(2) provided that the input value of IS PACE is 1, the values of the six grid spacings 
a l ,  .... a6 (second fig. in section 3.2) for all of the internal grid points. 

8.1 Intermediate printout. - For each pass IT through the entire flow field. for 
every major iteration ITER (with unchanged values of the coefficients CC, Cg, C 1,...)c6 
in the governing equation (3.3.4)), the intermediate printout gives the magnitude and 
location (I-MAX, J -MAX, and K-MAX) of the absolute value of the maximum residual 
error 9 encountered during the pass. For a given value of ITER, after convergence (9 < 
EPS R )  or after IT becomes greater than the input value of ITMAX, the program prints 
the exit flow area EXFLAR (section 5.12) and its error ERRAR (section 5.11, expressed 
as a decimal fraction, for each of the ICON iterations (section 5.1.1). Also, any 
intermediate messages regarding, for example, the counters ICX, ICY, and ITM 
(section 5.2.1) are printed. A sample page of intermediate printout follows. 

INTERMEDIATE PRINTOUT 

ITERATION ITERATION 
ITER IT 

MAX RES 
IN IT 

0 . 8 7 0 7 2 8 6  
0 . 3 9 6 2 4 9 0  
U .  2 3 5 2 4 8 7  
0 . 1 3 3 4 0 1 4  
0 . 0 7 9 4 6 9 4  
0 . 0 4 9 8 2 4 7  
0 . 0 3 1 3 2 2 6  
0 . 0 1 9 2 4 7 3  
0 . 0 1 2 0 3 8 5  
0 . 0 0 7 3 9 5 1  
0 . 0 0 4 4 3 5 9  
0 . 0 0 2 7 0 0 5  
0 . 0 0 1 6 1 3 8  
0 . 0 0 0 9 4 7 5  
0 . 0 0 0 5 4 8 4  
0 . 0 0 0 3 1 3 7  
0 . 0 0 0 1 7 8 0  
0 . 0 0 0 1 0 0 2  
0 . 0 0 0 0 5 6 2  
0 . 0 0 0 0 3 1 5  
0 . 0 0 0 0 1 7 6  
0 . 0 0 0 0 0 9 8  
0 . 0 0 0 0 0 5 5  
0 . 0 0 0 0 0 3 1  
0 . 0 0 0 0 0 1 7  
0 . 0 0 0 0 0 1 0  
0 . 0 0 0 0 0 0 5  

... 

... ... ... 

I-MAX 

8  
8 
7  
7  
6  
6  
6  
6  
5  
5  
5  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
3 
4  
7  

... ... ... ... 

J-MAX 

7 
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  
7  

... ... ... ... 

K-MAX 

1 0  
8  
7  
7  
7  
6  
6  
6  
6  
6 
6  
6  
6 
6 
6 
6  
6  
6  
6  
6  
6  
6 
6  
6  
6 
6  
6 

... ... 

... ... 

ITERATION 
ICON 

... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... 

... ... 
1 
2  
3 
4  

EXIT FLOW 
AREA (DIM) 

CORRECT FLOW 
AREA (DIM) E R R O R  

... 

. . ~  

... 

... 

. . , 

. . . 

. . .  

... 

... 

. . "  . . .  

. . .  

... . . .  ... 
0 . .  

... ... 

... 

. . .  

... 

... ... 

... 

... 

... 
- 0 . 0 0 0 0  
- 0 . 0 0 0 0  

0 . 0 0 0 0  
0 . 0 0 0 0  



8.2 Output table I. - Output table I gives the values of variables a t  all internal grid 
points-for potential surfaces in the (input) range from IA to IZ. The headings in output 
table I are as follows: 

grid-point indices in directions of increasing velocity potential PHI, 
stream function PSI, and stream function ETA, respectively 

PHI, PSI, a t  grid point (I, J,K),  values of velocity potential and two stream 
ETA functions, respectively (sections 3.0 to 3.2) 

X(Dm),Y(DINh), a t  grid point (I, J,K), values of X,Y,Z coordinates, expressed in same 
ZtDIIVI) dimensional unit as input values of SP(1) (sections 3.5 and 3.6) 

Q/Q-UP a t  grid point (I, J ,  K), value of local velocity divided by upstream velocity 
(section 3.3) 

MACH NO. a t  grid point (I, J , K), value of local Mach number 

RO/RO-UP a t  grid point (I, J ,K),  value of local static density divided by upstream 
static density (section 3.3) 

PIP-UP a t  grid point (I, J,K),  value of local static pressure divided by upstream 
static pressure. For incompressible flow (IFLUID = l), P/P-UP is 
defined as local difference between total and static pressure divided by 
the same difference a t  upstream boundary (which definition is equivalent 
to square of Q/Q-UP) (section 3.3)) 

SIN(THET) sine of "distortion" angle 8 (sections 3.1, 3.3, and 4.2 (constraint 5)) 

COS(AL1), ..., a t  grid point (I, J,K),  values of direction cosines of three unit vectors 
COS(GM3) 

- e 1, 752, and F3 (sections 3.1, 3.4, and 4.2) 

A, B a t  grid point (I, J,K),  values of continuity parameters (eqs. (3.3.2) and 
(3.3.3) and sections 3.4 and 5.2) 



A sample page of output table I resulting from the sample input in section 7.4 follows. 

OUTPUT TABLE NO. I (INTERNAL GRID POINTS) 

I J K  PHI PSI ETA XCDIM) YCDIM) Z(DIM) Q/Q-UP MACH NO RO/RO-UP P/P-UP iIN(THET) 
COS(AL1) COS(BT1) COS(GM1) COS(AL2) COS(BT2) COS(GM2) COS(AL3) COS(BT3) COS(GM3) A B 

i4 10 9 2.51638 0.87683 0.87683 19.7331 7.4296 8.1175 1.5330 0.6269 0.8687 0.8212 1.0000 
0.9757 -0.0309 0.2171 0.0316 0.9995 0.0004 -0.2170 0.0065 0.9762 0.3018 0.7285 



8.3 Output table 11. - Output table I1 gives the values of variables along the 
boundaq contow: of potential surf aces selected by the input. The headings in output table 
I1 are as follows: 

I index number for potential surf ace (constant PHI) 

HC P index number for contour point along boundary of potential surface I 

X-CP~DIM), a t  contour point ICP of potential surface I, values of X,Y,Z 
V-CP(DIM), coordinates, expressed in same dimensional units as input values 
Z-GP(DIM) of SP(1) (sections 5.6 and 6.3) 

Remaining headings for table 11 are defined under output table I (section 8.2). A sample 
page of output table 11 resulting from the sample input in section 7.4 follows. 

OUTPUT T A B L E  NO. I1 (COORDINATE P O I N T S  ALONG CONTOURS OF SELECTED P O T E N T I A L  SURFACES) 

I I C P  X-CPCDIM) Y-CPCDIM) Z-CPCDIM) Q/Q-UP MACH NO RO/RO-UP P/P-UP 



8.4 Output table 111. - Output table III gives the values of various variables along 
streaGlines (constant ICP) selected by the input. X-SL(DIM1, Y-SL(DIM), and 
Z-SL(DIM) are values of the X,Y ,Z coordinates, respectively, along the streamline. The 
next four headings are the same as defined for output table I1 (section 8.3). The last two 
headings are the lengths (same dimension as SP(1)) of the streamline ICP computed in 
two ways as follows: 

where AX = X(1) - X(I - 11, etc. 

and 

A sample page of output table 111 resulting from the sample input in section 7.4 follows: 

OUTPUT TABLE NO. I11 (COORDINATE POINTS ALONG SELECTED STREAMLINES) 

ICP I X-SL(D1M) Y-SL(D1M) 2.-SLCDIM) Q/Q-UP MACH NO RO/RO-UP P/P-UP S-ICDIM) 5-IICDIN) 



8.5 Output to tape or disk for three-dimensional graphics. - Output to tape or disk 
for thiee-dimensional graphics occurs a t  the end of subroutine PUTOUT and is described 
in section 6.3. A three-dimensional plot resulting from the sample input in section 7.4 
follows. Running time on an IBM 370/3033 was 6.50 min. 

9.0 WIVTERICAL EXAMPLES 

Five numerical examples of ducts are presented. For each example, the upstream 
bomdary configuration and associated grid are given together with the prescribed velocity 
dist~bution on the lateral surface and a number of key input parameters. The results are 
presented by three-dimensional graphs. The first example is a completely general three- 
dimensional nozzle with a nonsymmetrical upstream boundary configuration and rapid 
acceleration of the flow with no deceleration along the surf ace streamlines. The second 
exafnple is an accelerating elbow with the same upstream boundary configuration and 
aga.in no deceleration along the surface streamlines. The third example is an accelerating 
S-duct with an elliptical upstream boundary configuration. The fourth example is a 
rapidly decelerating elbow with a circular upstream boundary and an unusually sharp 
tuisning angle. This solution, like the others, can be reversed to give, in this case, a 
rapidly accelerating elbow with no deceleration along the surface streamlines. Of special 
interest in this example is the pronounced initial turning of the inner wall in a direction 
opposite to that of the elbow itself. This phenomenon has also been observed (ref. 3) in 
designs of two-dimensional ducts. The last example is a preliminary design of a side-inlet 
duc"c;such as might be used with various types of turbomachinery. The solution has planar 
symmetnj (with a small amount of overlap in one region), and for the reverse flow case, is 
an accelertetkg flow into a circular annulus with no deceleration anywhere along the duct 
walls. 



9.1 Numerical example I. - Straight, three-dimensional nozzle with rapid acceleration (no 
deceleration along streamlines) 



NUMERICAL EXAMPLE I - UPSTREAM BOUNDARY AND ASSOCIATED GRID 

lo r 



INPUT FOR NUMERICAL EXAMPLE I 

I 

Option I S Y M  

Option IVEL 
Ma jot  i terations (ITER) 
Coefficient to average x, y, z (CAVP) 

Upstream Mach number (AMU) 
Ratio of specific heats (GAM) 
J location of p r imary  streamline (JX) 

K location of p r imary  streamline (KX) 

Number of subdivisions between 

adjacent input  values of I (NSD) 

Accuracy of f i n  ite-difference solution (EPS R) = 0.000005 

Overrelaxation factor (ORELAX) = 1.35 

Exit-area e r ro r  (ERRAR) = 0.0005 
Runn ing  time (370 130331, m i n  = 55.69 

DEL-P-01 = 0.3 

DEL-P-12 = 0.2 
DEL-P-23 = 0.3 

Location of principal streamline (XP) = 0.9 



NUMERICAL EXAMPLE I 



9.2 Numerical example 11. - General case of three-dimensional accelerating elbow (no 
deceleration along streamlines) 



NUMERICAL EXAMPLE TI - UPSTREAM BOUNDARY AND ASSOCIATED GRID 



Option I S Y M  

Option IVEL 
Major iterations (ITER) 

Coefficient to average x, y, z (CAVP) 

Upstream Mach number (AMU) 

Ratio of specific heats (GAM) 
J location of p r imary  streamline (JX) 

K location of p r imary  streamline (KX) 

Number of subdivisions between 

adjacent input  values of I (NSD) 

Accuracy of f inite-difference solution(EPSR) = 

Overrelaxation factor (ORELAX) 

Exit-area e r ro r  (ERRAR) 

Runn ing  time (37013033), m i n  

DEL-P-01 

DEL-P-12 
DEL-P-23 

Location of pr incipal  streamline (XP) 



NUMERICAL EXAMPLE I1 



9.3 Numerical example 111. - Accelerating S-duct with elliptical upstream boundaq (no 
deceleration along streamlines) 



NUMERICAL EXAMPLE I11 - UPSTREAM BOUNDARY 
AND ASSOCIATED GRID 

r 



INPUT FOR NUMERICAL EXAMPLE I11 
(4 

Option I S Y M  

Option IVEL 

Major iterations (ITER) 
Coefficient to  average x, y, z (CAVP) 

Upstream Mach number (AMU) 
Ratio of specific heats (GAM) 
J location of p r imary  streamline (JX) 

K location of p r imary  streamline (KX) 
Number of subdivisions between 

adjacent input  values of I (NSD) 

Accuracy of finite-difference solution (EPSR) = 

Overrelaxation factor (ORELAX) 

Exit-area e r ro r  (ERRAR) - 

Runn ing  time (37013033), m i n  - 
DEL-P-01 
DEL-P-12 

DEL-P-23 

Location of principal streamline (XP) 

* 
Not applicable. 



NUMERICAL EXAMPLE I11 



9.4 Numerical example TV. - Decelerating elbow with sharp turn and circular erpstseam 
boundary (no deceleration for reversed flow) 



NUMERICAL EXAMPLE I V  - UPSTREAM BOUNDARY AND ASSOCIATED GRID 



INPUT FOR NUMERICAL EXAMPLE I V  

Option I S Y M  

Option IVEL 

Major iterations (ITER) 
Coefficient to average x, y, z (CAVP) 

Upstream Mach number (AMU) 
Ratio of specific heats (GAM) 

J location of p r imary  streamline (JX) 
K location of p r imary  streamline (KX) 

Number of subdivisions between 
adjacent input  values of I (NSD) 

"Not applicable. 

Accuracy of f inite-difference solution (EPSR) = 

Overrelaxation factor (ORELAX) 

Exit-area e r ro r  (ERRAR) 
Runn ing  time (370 130331, m i n  

DEL-P-01 

DEL-P-12 

DEL-P-23 
Location of pr incipal  streamline (XP) 



NUMERICAL EXAMPLE I V  



9.5 Numerical example V. - Planar symmetry solution for side inlet (in reversed-flow 
case; no deceleration for reversed-flow direction) 



NUMERICAL EXAMPLE V - UPSTREAM BOUNDARY AND ASSOCIATED GRID 

34 r 



INPUT FOR NUMERICAL EXAMPLE V 

Option I S Y M  

Option IVEL 
Major iterations (ITER) 
Coefficient to average x, y, z (CAVP) 

Upstream Mach number (AMU) 
Ratio of specific heats (GAM) 
J location of p r imary  streamline (JX) 

K location of p r imary  streamline (KX) 

Number of subdivisions between 

adjacent input  values of I (NSD) 

b 

Not applicable. 

Accuracy of finite-difference solution (EPSR) = 0.000005 

Overrelaxation factor (ORELAX) = 1.30 
Exit-area e r ro r  (ERRAR) = 0.0110 

Runn ing  time (370130331, m i n  = 33.05 
DEL-P-01 - - ... .,. 

DEL-P-12 = ... 
DEL-P-23 = ... 

Location of pr incipal  streamline (XP) = ... 



NUMERICAL EXAMPLE V 



10.0 CONCLUDING REMARKS 

The general design method for three-dimensional, potential flow developed in part I 
of this report (ref. 1) is herein applied to the design of simple, unbranched ducts. A corn- 
puter program, DIN3D1, is developed and five numerical examples are presented, 
including a nozzle, two elbows, an S-duct, and the preliminary design of a side inlet for 
turbomachines. The two major inputs to the program are the upstream boundary config- 
uration and the lateral velocity distribution on the duct wall. As a result of these inputs, 
boundary conditions of the problem are overprescribed and the problem is ill posed. How- 
ever, it appears that there are degrees of "compatibility" between the two major inputs 
and that for reasonably compatible inputs satisfactory, reliable solutions can be obtained. 
By not prescribing the shape of the upstream boundary, the problem presumably becomes 
well posed, but it is not clear how to carry out a practical design method under this cir- 
cumstance. Nor does it appear desirable, because the designer usually needs to retain 
control over the upstream (or downstream) boundary configuration. 

The problem is further complicated by the fact that, unlike the two-dimensional 
case, and irrespective of the upstream boundary shape, some prescribed lateral velocity 
distributions do not have proper solutions (appendix C). 

The input data for an example solution together with example output tables and a 
three-dimensional plot of the solution are given in sections 7.4 and 8.1 to 8.5, respectively. 



APPENDIX A 

"EQUILIBRIUM VELOCITY DISTRIBUTIONS FOR 

INPUT OPTION NEL EQUAL TO 2 O R  3 

The ""equilibrium'helocity distributions for input option IVEL equal to 2 or 3 refer 
to the velocity distributions around the contours of the potential surfaces; the velocity 
distribution along the principal streamline (section 7 -2) is not affected. Variation in the 
velocity distribution around the contour (e.g., DQ in second fig. of section 7.2) causes the 
duct to bend and may be looked upon as the duct "loading." 

Consider potential flow in an infinitely long duct with constant loading. Such a duct 
will turn an infknite number of degrees, and the duct cross section will be constant. Under 
these circumstances, the potential surfaces are flat planes, and the "equilibrium" velocity 
distribmion normal to the planes is a free vortex 

qr = constant (Al) 

where the radius r is measured from the axis about which the duct bends. 

Such an equilibrium duct shape halfway between +oo can be considered to lie on 
the Y,Z plane corresponding to the upstream boundary. Thus, 

z 
Axis for IVEL  = 2 

Axis for 
IVEL  = 3 

For IVEL = 2, the axis of the bend is a line of constant 2; and for IVEL = 3, the axis is a 
line of constant Y, as shown. 

For rVEL equal to 2 or 3, the "equilibrium" shape is assumed to be the input shape 
of the upstream boundary and the lateral velocity distribution corresponds to the "equi- 
Iibrium'helocity based on that shape. (Other shapes could be used, but these would entail 
additional input and probably would not achieve the same degree of compatibility 
(section 4.1) between the prescribed upstream boundary shape and the prescribed lateral 
velocity distribution.) 



For IVEL = 2, equation (Al) gives 

where (preceding figure) the subscript P refers to the principal streamline (at which qp 
is the input value of QP(1)) and subscript o refers to the maximum (outer? radius where 
q is equal to qp + Aqamp and Aqam is the input value (negative) of DQAMP(I) a t  
potential surface I. (Note that DQA&P(I) for IVEL options 2 and 3, as opposed to 
option 1, is the difference between the minimum velocity, which occurs a t  ro in the 
figure, and the input velocity QP(1) of the principal streamline.) 

In the figure, the radius r is related to the Z coordinate by 

and 

From equations (A21 and (A41, 

and from equations (AZ), (A3), and (AS), 



Thus, a t  each potential surface I, for IVEL = 2, equation (A6) gives the lateral distri- 
bution of velocity q as a function of the coordinate Z around the upstream boundary 
contour. 

As s h o w  in the preceding figure, rp (at which radius q = q can be greater 
than rmin (at which radius q = q,,,), but r must be reasonab5 greater than 
r, ( a t  which radius q = qmin). In subroutine ~ E L D ,  for N E L  = 2, i f  

r -I' z p  - z 
o p -  - 0 

r - r  < 0.5 
o min 'min - '0 

the solution is stopped. 

In a similar fashion, for IVEL = 3, 

q~ r~ q =  - =  q~ 
r Y p - Y  

1 - 

and the solution is stopped if 

r - r  
0 P - - Y~ - Yo 

r - r  < 0.5 
o min 'mine 



APPENDIX B 

CONDITION FOR NORMALITY OF UNIT VECTORS 752 and 753 

WITH UNIT VECTOR El  

Consider the case in which the unit vectors El  and F2 are not normal and find the 
direction cosines for a tlhird unit vector Ezx, which lies in the plane of F1 and F.2 and is 
norrnal to El.  Thus, 

Because the three vectors are coplanar, they are related by 

from which 

cos %X = 5 cos q + k2 cos a 
2 

cos J32x = kl cos A1 t 5 cos R2 

cos y2x = kl cos y + k cos y 1 2  2 



where cos C Z ~ ~ , . . . ,  cos y2 are the direction cosines of F2x, Fl, and 752 and k l  and k2 
are constants. 

The constants kl  and k2  are determined from equation (B1) as follows: 

and 

from uvlnich 

- - 
e 

2 x  ' e2 
= cos (8 - 90" )  = sin 8 = k cos 8 + 

1 5, 

T h s ,  the direction cosines for F2,, which is F2 adjusted to satisfy the normality 
condition, are known from equations (B2) to (B4). 

In a similar fashion, the adjusted direction cosines for 53 are given by 

cos %x = 9 cos al + 5 cos g 
cos A3x = 5 cos A + k cos A 

1 2  3 

cos y3x = 5 cos y + k cos y 1 2  3 

where kl and k 2  are given by equations (B3) and (B4), respectively. 



APPENDIX C 

PROBLEMS AND LIMITATIONS OF THE THREE-DIMENSIONAL DESIGN METHOD 

The ill-posed nature of the three-dimensional duct design method when both the 
upstream boundary configuration and the lateral velocity distribution are prescribed is 
discussed in section 4.0. This ill-posed nature negates a proper solution. However, for 
relatively "compatible" upstream boundary configurations and lateral velocity distribu- 
tions, reasonable solutions are forced by introduction of the six constraints in section 4.2 
and by limiting the number of major iterations (ITER) to a range over which the solution is 
converging, as evidenced by decreasing maximum residuals 9. This appendix considers 
other problems and limitations of the design method, and for this purpose it is assumed 
that a method exists for assuring an absolutely compatible upstream boundary configu- 
ration (if such exists) for a given prescribed, lateral-velocity distribution. Also, without 
destroying the generality of the discussion, it is convenient to assume planar symmetry. 

For the classical, two-dimensional, duct design problem (ref. 3) a solution exists for 
every prescribed, piecewise- continuous, velocity distribution along the duct walls. For 
the three-dimensional problem this universal existence does not appear to be the ease. 
For example, consider a straight duct (which, i f  the velocity is not constant, implies two 
planes of symmetry a t  right angle, with the duct centerline along the intersection). 
Presumably, if  the duct is straight, the upstream boundary configuration has biplanar 
symmetry, but is otherwise general. Thus, 

,- Centerline 
,'I of duct 

I 
I 
I 

\\ I 
's Planes of 

symmetry 

P = 0.5 

where P is the decimal fraction of distance around the contour. In the upstream and 
downstream regions (section 7.21, the lateral velocity q, expressed as a ratio of the 
upstream velocity, is 1.0 along every boundary streamline. Elsewhere, let the prescribed 
velocity be 1.0 along the streamlines through a and c (P = 0.0 and 0.5, respectively), and 
let the velocity decrease along the contour in an arbitrary fashion, but with biplanar sym- 
metry, to a finite value approaching zero for the streamline through b (P = 0.25). If this 
distribution of velocity with P is maintained along the boundary streamlines over a large 
range of the velocity potential Aq, then from equation (3.0.1) 



so that over the range Ap 

from which the length (As)b of streamline b becomes many times larger than the 
streamline length and no solution (i.e., shape of flow field) appears likely. I t  
might be argued that the large (As)b could be accommodated by a rapid outward fanning 
sf streamline b, but the pressure gradients associated with the velocity distribution 
preclude this. (The rapid outward fanning of streamline b would approach a two- 
dimensional configuration in which streamlines a and c come together, lie on the duct 
centerline, and have a velocity distribution that adjusts to the prescribed velocity of 
boundarly streamline b. In the three-dimensional case, however, the velocity distributions 
along streamlines a and c are prescribed and thus cannot adjust. This inability to adjust 
is probably the center of the problem.) 

Finally, for the example just discussed the velocity q along the straight streamline 
on the centerline of the duct can be no higher than 1.0 (which is the highest velocity on 
the boundam streamlines in this example) and will be less than 1.0 where influenced by 
velocities less than 1.0 on the boundary. The lengths of the streamlines between the 
upstream and downstream potential surfaces are given by 

Thus, As for the centerline streamline with velocities less than 1.0 is longer than As for 
the bowdaiv streamlines a and c, which have a constant prescribed velocity of 1.0. 
However, in contradiction, the centerline streamline must be shorter than the boundary 
streamlines a and c, because it is straight and normal to the upstream and downstream 
potential surfaces, wKich are flat and parallel. I t  is concluded that for three-dimensional 
design pro"oems not every prescribed velocity distribution has a proper solution. 

For velocity distributions without proper solutions program DIN3D1, using the 
constraints in section 4.2 and limiting the number of major iterations (ITER), forces a 
""reasonable" sosol.ution. A measure of this reasonableness is the difference in streamline 
lengths S-1 and S-I1 (output table 1111, which lengths should be equal. 

Anoaer problem area in the application of program DIN3Dl occurs when certain 
characte~stics in the shape of the downstream boundary configuration are desired. 
(There is;, of course, no way to achieve a precise shape, because the downstream config- 
uration is dictated by the upstream configuration and the prescribed lateral velocity dis- 
t~b;u'Lion,) For example, consider a straight duct with a transition section in which the 
duet cross section changes from a circular upstream shape t o  an elliptical dovvnstream 
shape of the same area. A normal design procedure, based on one-dimensional consider- 
ations, wodd keep the duct area constant and employ a linear variktion in the fineness 
ratio of the elliptical cross section starting from 1.0 for the circle and ending with the 
desired value for the downstream shape. Here, to avoid large losses, the designer's 
objective is to keep the velocity on the duct wall constant (i.e., q = 1.0 along the boundary 
streamlines); and provided that the transition length is not too short, this objective should 
be nearly achieved. Thus for this type of three-dimensional design problem very large 



changes in the duct cross section occur for very small changes in the prescribed lateral 
velocity distribution. It is not easy to determine just how large and where these small 
changes in velocity should be. Furthermore because this type of problem is so sensitive to 
small changes in lateral velocity distribution, the downstream boundary shape is also 
sensitive to the necessarily approximate methods used in the forced, finite-difference 
solution of the governing differential equation (3.3.1). That is, the downstream shape 
varies appreciably with number of iterations (ITER), with upstream grid size and arrange- 
ment (section 7.11, with various damping coefficients (sections 4.6 and 5.2.21, and perhaps 
with such lesser iterations as ICONX (section 5.1.1) and NTRY (section 7.3). 

In summary, it is not easy to control the downstream boundary shape of the duct by 
the prescribed lateral velocity distribution; although i t  is relatively easy to control the 
streamwise shape of the duct by this means. However, substantial differences in the 
downstream shape need not imply significantly different lateral velocity distributions, 
provided that the downstream areas are equal in size. Finally, in those cases where the 
downstream shape is important, the solution becomes more sensitive to the lateral veloc- 
ity distribution, if  the damping coefficient CAVN is reduced to 0.0, or a t  most is not 
greater than 0.1. 
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